## Through Wall Human Pose Estimation Using Radio Signals

Migmin Zhao, Tianhong Li, Mohammad Abu Alsheikh, Yonglong Tian, Hang Zhao, Antonio Torralba, Dina Katabi, CVPR '18

## OBJECTIVE

Estimate a 2D skeletal representation of the joints on the arms and legs, and keypoints on the torso and head while with occlusions (like wall)



### Motivation

- Human Pose Estimation is an important task in Computer Vision
  - Surveillance
  - Activity Recognition
  - Gaming etc
- With camera occlusions are a big hindrance
- While RF signals can see through wall
  - 3D tracking via body radio reflections, Fadel Adib, 2014
  - Capturing the Human figure through a wall, Fadel Adib, 2015
  - Wfid: Passive device-free human identification using WiFi signal, F Hong, 2016

### **Related Work:**

- Computer Vision:
  - Top-down: First detect people and then apply pose to each individual person
  - Bottom-up: First identify key-points and then group and associate them to form a person
- Wireless System:
  - High frequency based localization and people tracking : Uses mmWave, but fail to penetrate walls
  - Lower Frequency based: Uses GHz signals like WiFi to track and it can penetrate through walls
  - Device free tracking uses reflections to localize and track people

#### METHOD





.

Horizontal Heatmaps

#### Resolutions for the RF

10cm resolution in distance  $\Rightarrow$  3GHz of Bandwidth

(They use 5.46 – 7.24 GHz  $\Rightarrow$  2GHz)

15° resolution in angle  $\Rightarrow$  8 antenna in both horizontal and vertical axes

100 frames.. So inputs are 100xMxN for images

For horizontal and vertical heatmaps these will be 200xMxK and 200xNxK

(70µWatts of Transmit Power)



#### PRE-TRAINED (OpenPose)



Are complex channels with two real valued channels one for each real and imaginary parts

- Horizontal and vertical heatmaps are Complex heatmaps
  - different networks for both real and imaginary parts
- These are represented as two different channels (so.. 2\*100xMxK (2\*100xNxK) for horizontal (vertical) streams)

#### channel-wise concatenation of horizontal and vertical RF encodings Teacher Network T**RGB** Frames **Keypoint Confidence Maps** from Visual Inputs Student Network Ssupervision Ö Vertical RF Encoder $E_v$ **XXXXXXXXXXX** Pose Decoder DĐ Vertical Heatmaps <u> YYYYYYYYY</u> Horizontal RF Encoder $E_h$ **Keypoint Confidence Maps** from RF Signals 4 layers of $3 \times 6 \times 6$ with fractionally Horizontal Heatmaps stride of $1 \times 1/2 \times 1/2$ , except the last layer has one of $1 \times 1/4 \times 1/4$

10 layers of  $9 \times 5 \times 5$ spatio-temporal convolutions with  $1 \times 2 \times 2$  strides

#### Loss Function

$$\min_{\mathbf{S}} \sum_{(\mathbf{I},\mathbf{R})} L(\mathbf{T}(\mathbf{I}), \mathbf{S}(\mathbf{R}))$$
(1)

We define the loss as the summation of binary cross entropy loss for each pixel in the confidence maps:

$$L(\mathbf{T}, \mathbf{S}) = -\sum_{c} \sum_{i,j} \mathbf{S}_{ij}^{c} \log \mathbf{T}_{ij}^{c} + (1 - \mathbf{S}_{ij}^{c}) \log (1 - \mathbf{T}_{ij}^{c}),$$

#### Dataset

50 hrs of data collection at 50 different locations

Offices, coffee houses lecure and seminar halls across MIT

### RESULTS

| Methods        | VI   | V1s1ble scenes |           |      | 1 hrough-walls   |           |  |
|----------------|------|----------------|-----------|------|------------------|-----------|--|
|                | AP   | $AP^{50}$      | $AP^{75}$ | AP   | AP <sup>50</sup> | $AP^{75}$ |  |
| <b>RF-Pose</b> | 62.4 | 93.3           | 70.7      | 58.1 | 85.0             | 66.1      |  |
| OpenPose[10]   | 68.8 | 77.8           | 72.6      |      | -                |           |  |
|                |      |                |           |      |                  |           |  |

Table 1: Average precision in visible and through-wall scenarios.



Figure 5: Average precision at different OKS values.

| Methods        | Hea  | Nec  | Sho  | Elb  | Wri  | Hip  | Kne         | Ank  |
|----------------|------|------|------|------|------|------|-------------|------|
| <b>RF-Pose</b> | 75.5 | 68.2 | 62.2 | 56.1 | 51.9 | 74.2 | 63.4        | 54.7 |
| OpenPose[10]   | 73.0 | 67.1 | 70.8 | 64.5 | 61.5 | 71.4 | <b>68.4</b> | 68.3 |

Table 2: Average precision of different keypoints in visible scenes.



#### Well lit and occlusion free environments



#### Not so well lit, with occlusion and even reflectors



# Importance of considering multiple windows over time



| # RF frames | AP   |
|-------------|------|
| 6           | 30.8 |
| 20          | 50.8 |
| 50          | 59.1 |
| 100         | 62.4 |

Table 3: Average precision of pose estimation trained on varying lengths of input frames.

Figure 9: Activation of different keypoints over time.

#### **Person Identification**

Based on the gait of a person one can identify a person

Over 100 different persons:

| Method         | Visible | e scenes | Through-walls |      |  |
|----------------|---------|----------|---------------|------|--|
|                | Top1    | Top3     | Top1          | Тор3 |  |
| <b>RF-Pose</b> | 83.4    | 96.1     | 84.4          | 96.3 |  |