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Applications of Indoor localization

Retail stores (Target, Walmart, etc.)
Medical monitoring (human activities)
Intelligent home

Industrial plants




Infrastructure-based Indoor localization

Definition: approaches that require additional hardware other than
user’s device or require information about the environment

Examples:
* Wi-Fi:
* Fingerprinting[1]
* Known AP location|[2]
* RFID[3]
* Building lights[4]
* Bluetooth[5]



Infrastructure-free Indoor localization

Definition: Using existing sensors on an off-the-shelf user device
(phone, tablets, smartwatch, etc.)

Includes:
 IMU:
* Accelerometer
* (@Gyroscope
* Compass/Magnetometer
 Light/Proximity sensor
* Front/Back-facing cameras
« GPS

The problem: Given onboard sensor measurements, can we calculate the a
user’s path close to the ground truth?



Sensors: Gyroscope

Measurement: 3 Axis angular velocity (rad/sec)
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* Unavoidable drift from integration bias
 Works well in the short term, but inaccurate
due to driftin Ionger period + from gyro measurements to orientation — use Taylor expansion
have: angle at have:
last time step time step

| |
0(t+Ar) = 9(t)+%9(t)At+8, £~0(Ar)

t
want: angle at = o s
' |
current time step ' approximation error!

have: gyro measurement
(angular velocity)



Sensors: Gyroscope

MEMS (microelectromechanical systems) Gyroscope
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Sensors: Accelerometer

Measurement: 3 linear acceleration (m/sec”2)

e Housing attached to Phone
circuit

Properties:
* Significant noise

‘ - w—-
e Unreliable in short-run jl_JI_JI_
* Relatively accurate in long-term since no drift
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Sensor: Compass

Measurement: 3 orthogonal axis measuring magnetic field in uT

Properties: v S
. agnetic FASSOMRBRANC
» Affected by metal/electronics 24

Pole _‘ North Pole

 Complementary to accelerometer

e Varies with longitude and latitude, needs GPS
calibration
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Sensor Fusion

intuition:

1. Gyro + Acc (complementary filter) -> pitch&row « remove drift from gyro via
high-pass filter

* remove noise from
accelerometer via low-pass
filter

2. Acc + Magnetometer -> Yaw

Cone




Infrastructure-free approaches to indoor localization

(a) Real time sensor output

1. Pengfei Zhou, Mo Li, and Guobin Shen. 2014. Use it free: | | YT R G| e—Comme
instantly knowing your phone attitude. In Proceedings of the PN
20th annual international conference on Mobile computing and
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Infrastructure-free approaches to indoor localization

2. Nirupam Roy, He Wang, and Romit Roy Choudhury. 2014. |
am a smartphone and i can tell my user's walking direction.
In Proceedings of the 12th annual international conference on
Mobile systems, applications, and services (MobiSys '14).

Takeaways:

* Only a small portion of sensor data provides reliable
information about local walking direction. Only a small
portion of swing phase w/ minimum acceleration (around t7)
provides useful information.

 Magnetometer readings can be corrected by identifying
interference source and subtract the source.
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Infrastructure-free approaches to indoor localization

3. He Wang, Souvik Sen, Ahmed Elgohary, Moustafa Farid,

Moustafa Youssef, and Romit Roy Choudhury. 2012. N User 1's motion trace —u
war-drive: unsupervised indoor localization. In Proce —
the 10th international conference on Mobile systems, Seed ¥ ,
. . . . Landmarks (SLM) Dead Reckon User’s quoor
applications, and services (MobiSys ‘12), — —>  using existing landmarks > Location
Landmarks (OLM)

Takeawa ys: e e P e ek iy SR :

e Landmarks in the environment (Wi-Fi signal strength, Unsupervised Clustering
acceleration abnormalities, compass abnormalities) e | s ’ Semsor Chuster | .. [ graini
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Machine learning/Deep learning approaches

1. Deep Learning. Based.Spe.ed Estimation for Constraining ‘ (NS o . it
Strapdown Inertial Navigation on Smartphones. : |

A Cortés, Santiago; Solin, Arno; Kannala, Juho T El velocity
eprint arXiv:1808.03485 gyroscope
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Takeaways:
 Use CNN learned speed to constrain PDR
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Machine learning/Deep learning approaches

2. VINet: Visual-Inertial Odometry as a Sequence-to-Sequence

Learning Problem
A Clark, Ronald; Wang, Sen; Wen, Hongkai; Markham, Andrew;
Trigoni, Niki. J eprint arXiv:1701.08376)

Takeaways:

e Using visual cues to correct
for IMU calculations.

* Core LSTM to remember past
position (Pose)

Vinitialised by flownet weights
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Machine learning/Deep learning approaches

3. IONet: Learning to Cure the Curse of Drift in Inertial . FuiTmectoy "
Odometry - . - —
A Chen, Changhao; Lu, Xiaoxuan; Markham, Andrew; Trigoni, 4 : : P
Niki. eprint arXiv:1802.02209 . * % * * % '.
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Problems to be solved

* Required amount of data is large to train good model
* Few solutions for multi-floor localization
* Generalization abilities of model

* Across different users

* Across different use case scenarios




Thank you!




